注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

yzc168的博客

老有所求,求之若渴

 
 
 

日志

 
 
关于我

本人退休多年,一苴渴望学习,上网自学中医防病治病和养生知识,颇有一番心得体会,希望挖掘防病治病的各种知识和方法,丰富自己的养生之路

网易考拉推荐

中国重大发现竟遥遥领先美国  

2013-03-29 20:40:13|  分类: 网络热点 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
    北京时间3月15日凌晨,《科学》杂志在线发文,宣布中国科学家领衔的团队首次在实验上发现量子反常霍尔效应。这一发现或将对信息技术进步产生重大影响。

    这一发现由清华大学教授、中国科学院院士薛其坤领衔,清华大学、中国科学院物理所和斯坦福大学的研究人员联合组成的团队历时4年完成。在美国物理学家霍尔1880年发现反常霍尔效应133年后,终于实现了反常霍尔效应的量子化,这一发现是相关领域的重大突破,也是世界基础研究领域的一项重要科学发现。

    由于人们有可能利用量子霍尔效应发展新一代低能耗晶体管和电子学器件,这将克服电脑的发热和能量耗散问题,从而有可能推动信息技术的进步。然而,普通量子霍尔效应的产生需要用到非常强的磁场,因此应用起来将非常昂贵和困难。但量子反常霍尔效应的好处在于不需要任何外加磁场,这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。

    量子点是一种通过分子束外延方法制备的纳米晶体,又被称为“人造原子”,可以为量子保密通信和光学量子计算提供理想的单光子源。此前,美国加州大学、斯坦福大学和英国剑桥大学等研究组实现了基于非共振激发量子点产生的单光子源。然而,由于单光子发射时间抖动、激子退相干等,不可避免地引起光子品质下降,光子全同性只能达到70%左右,无法进一步应用于可扩展量子信息处理。

  要发展能够真正实用化的光量子信息技术,关键技术之一是实现确定性的高品质单光子源。为此,微尺度物质科学国家实验室的潘建伟、陆朝阳等在国际上首次发展了一套新颖的量子点脉冲共振光学激发、多重滤波技术,显著消除了相干效应,解决了单光子源的确定性和高品质这两个基本问题。

  实验产生的单光子源信噪比超过300:1,二阶关联函数小于1。5%,光子全同性优于97%,这些技术指标使得中国在这一领域的研究跻身世界前列,为可扩展光学量子计算和基于自旋的固态量子网络的实现奠定了基础。审稿人称赞这是一个“令人惊喜的高质量实验”。

  光子,是光的最小能量量子。单光子探测技术,是近些年刚刚起步的一种新式光电探测技术,其原理是利用新式光电效应,可对入射的单个光子进行计数,以实现对极微弱目标信号的探测。有关专家认为,单光子探测技术能将现有的机载光电探测距离从几十公里提高到几千公里,势必带来机载目标探测系统的革命,极大地改变未来空天战场的作战方式。

  隐身飞机将无处“隐身”。F-22、B-2等飞机高超的隐身性能,几乎使现役雷达和光电探测系统变成“瞎子”。但单光子探测系统极高的探测灵敏度,即使对F-22、B-2这样的隐身飞机,作用距离也可达到几百到几千公里,可在极远距离上发现隐身飞机,使其“无处遁形”。

  空战将从“中距”拉向“远距”。配装单光子探测系统的作战飞机,由于对空目标探测距离极远,将使空中作战从目前的中距进一步扩为远距。如:配挂单光子超远程空空导弹,火力攻击距离可达到几百到几千公里之外。空中战争将从传统的几十公里的超视距作战变为间隔几千公里的非接触战争。

  “全球感知,全球打击”成为可能。利用空中平台或临近空间平台配装单光子探测系统,构建单光子探测网络,只需几部单光子探测系统就可实现对领空的全域覆盖。在此基础上用地面或空中远程导弹构建空中地面联合火力网,把单光子探测网络作为网络中心战的目标探测网络系统,可对任何位置(地面或空中)发射的导弹进行目标指引,有效攻击全球目标,实现“全球感知,全球打击”。

    过去20年,科学家已证明能探测到单个分子,也能生成单光子。然而,单个分子发现并吸收单光子的几率很低,由光子激发分子仍难以捉摸,因而通常需要每秒释放数十亿光子来轰击分子,才能从中获得一个信号。规避这一物理学难题的一般方式是,在原子周围构建一个腔洞,使光子能够长久囚禁其中,以保持两者良好的互动几率。

  而此次实验的挑战之一,就是获取具有适当频率和带宽的单光子来源。科研小组利用了一个事实:当一个原子或分子吸收单光子时,它将过渡到激发态。在几纳秒后,激发态将衰变为最初的基态,并放射出单个光子。

  在实验中,研究人员将两个嵌入有机晶体之中的荧光分子样本冷却至零下272摄氏度。每个样本中的单个分子都能由光谱选择结合空间。为了生成单光子,单个分子将从“源头”样本中激发而出。当分子的激发态衰变时,放射出的光子将紧紧聚集于距离几米之外的另一个“目标”样本之上。为了保证样本中的单个分子能够“看到”入射的光子,研究小组必须保证它们处于同一频率。此外,珍贵的单光子也需要与单个目标分子进行有效地互动。

  科学家表示,这是两个量子光学天线之间长距离通讯的首个例子。单个分子一般大小为1纳米,而聚集的光束却不能小于数百纳米。这通常意味着大多数的入射光都会环绕分子进行运动,而无需“看见”对方。然而,如果入射光子与分子的量子力学过渡产生共鸣,在这个过程中,分子可像天线一般发挥作用,抓住其附近的光波。

  评论这张
 
阅读(56)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017